
www.manaraa.com

An Educational Perspective on Database Management
Systems and Object-Oriented Methodology: A 12 Year

Journey∗

Shahram Ghandeharizadeh

Department of Computer Science
University of Southern California
Los Angeles, California 90089

ABSTRACT
Relational database management systems are an essential
component of many data intensive applications. At USC, a
course entitled “File and Database Management” introduces
students to fundamental concepts in relational databases.
Students are introduced to conceptual, logical and physi-
cal organization of data, use of both formal and commercial
query languages, e.g., SQL, indexing techniques for efficient
retrieval of data, the concept of a transaction, concurrency
control and crash recovery techniques. This paper summa-
rizes our experiences with this course and the challenges of
educating students on use of object-oriented concepts and
their mapping to tables.

Categories and Subject Descriptors
H.2.0 [Information Storage And Retrieval]: General

General Terms
Design, Human Factors

Keywords
Education, Object-Oriented, Database Management

1. INTRODUCTION
This paper is written based on twelve years of teach-

ing an introductory course on database management sys-
tems (CSCI 485), an elective course for students majoring in
Computer Sciences at the University of Southern California.
While its attendance is dominated by undergraduates (typi-
cally Juniors and Seniors), there are some first year graduate
students who enroll in this course. Throughout the years,

∗Our educational activities were supported in part by an
unrestricted cash gift from Microsoft Research.

Copyright is held by the author/owner.
OOPSLA’03, October 26–30, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

the course has been kept up-to-date by changing its assigned
projects on a regular basis (approximately every two years).
A recent change exercised students’ ability to use the C# [5]
programming language to develop the min-kernel of a re-
lational database management system, consisting of a file
system, a buffer pool manager, and abstraction of records
on disk pages.

One objective of CSCI 485 is to teach students how to
map hierarchical object-oriented representation of data to
flat structures, e.g., tables, that reside on a magnetic disk
drive. Typically, students appear to have an informal under-
standing of this concept prior to enrolling in the course. This
is based on their prior experiences, e.g., web servers1, con-
versations with peers, etc. They ask questions that demon-
strates their curiosity about this concept. These questions
range from “Why do Web Servers use relational databases?”
to “How can a program store objects in a relational database
management system?”. It is important to answer these ques-
tions effectively at the beginning in order to be able to
proceed with other database concepts, e.g., normal forms,
transactions and atomicity, etc.

This paper starts with a brief description of object-oriented
concepts and how they relate to database management sys-
tems. Next, Section 3 describes several fundamental student
mis-perceptions and a projects utilized to address these.
Section 4 concludes with a brief description of a set of tools
that would enhance our educational activities.

2. OBJECT-ORIENTED METHODOLOGY
AND DATA MODELS

An object-oriented framework advocates concepts such as
abstraction, polymorphism, encapsulation, inheritance, etc.
These concepts appear in different data models used to de-
scribe a database. These data models are categorized into
conceptual, logical, and physical. A conceptual model uti-
lizes tools such as UML [6] and E-R [1] to abstract the real
world entities that are represented by a database. The E-R
model, for example, consists of entity-sets that are reducible
to class definitions in either Java [3] or C#. It includes con-
structs such as ISA which enables a user to specialize entity
sets. This is comparable to inheritance. It is fair to conclude

1With Hollywood’s entertainment industry, management of
multimedia content has emerged as a leading industry in Los
Angeles. These industries hire students for their projects.



www.manaraa.com

a significant amount of overlap between object-oriented con-
structs and those of a conceptual data model. (Several text-
books [7, 4, 2] detail the E-R model.) It is important to note
the existence of object-oriented data model which extends
the E-R model with encapsulation, methods, and a unique
object identity.

A logical data model is a mathematical formalism for de-
scribing data. The relational data model and its algebra
have enjoyed wide popularity during the past few decades.
This data model employs a collection of tables to represent
both data and their relationship. A physical data model ad-
dresses the organization of data across mass storage devices
such as a magnetic disk drive. It includes an implemen-
tation with the primary objective to provide both (1) the
functionality desired by a data intensive application, and
(2) high performance. Relational database management sys-
tems (RDBMSs) have matured during the past two decades
with product offerings from many vendor.

3. COMMON MIS-PERCEPTIONS
The life cycle of a data intensive application typically

starts with a high level description of data using E-R model.
Next, this description is reduced to its relational equivalent.
This step is termed logical data design. This relational de-
scription is subsequently stored in a RDBMS (termed phys-
ical data design). One reason for using RDBMSs is their
high performance for storage and retrieval of data. Typi-
cally, the functionality of the application that employs this
RDBMS is written using an object-oriented programming
language, e.g., C++, Java, C#. This implementation maps
rows of tables into one or more instances of class definitions.
A common mis-perception is that of conceptual data design,
i.e., the high level description, is not important. To the con-
trary, the conceptual data design is essential because it gov-
erns both the organization of data and the class definitions
that implement the required functionality. It is interest-
ing to note that products such as Rational Rose and Visio
can produce both a relational database schema and its class
definition (e.g., in Java) once a system designer provides a
high level description of an application. However, how the
instances of a class are populated with data is an implemen-
tation specific task left to a programmer. This might require
the programmer to perform joins of one or more tables in
order to construct an object instance required by a specific
functionality. Once again, using the high level description of
data (E-R), the programmer is able to make clever decisions
on how this task is performed.

A second common mis-perception is to duplicate RDBMS
functionality in an object-oriented programming language.
A good example of this is to compute an average value of
a certain property (i.e., attribute, field) across all instance
of a class, e.g., average shopping bag checkout value. An
RDBMS is capable of processing SQL commands that in-
clude aggregates (average, count, sum, min, max). One
challenge is how to map an object-oriented aggregate to its
relational representation in order to author the necessary
SQL query. The presence of a high-level description and
how it is mapped to its relational equivalent is an essential
component of this step.

We try to tackle these challenges both during the lectures
and by employing projects that require students to practice
these concepts. Once students are introduced to the E-R
diagram, their first homework assignment requires them to

derive the E-R diagram of an application. Grading their so-
lution is a difficult task because of the subjective nature of
data modeling. Different students interpret the same prob-
lem in a different way, resulting in different E-R diagrams.
With an in-class discussion of these E-R diagrams, students
quickly realize the importance of abstraction. Moreover,
they learn the importance of communication during this
stage in order to ensure that their abstractions match the
data needs of their target application. If the abstraction of
an application fails to capture critical data, then the imple-
mentation effort with almost certainly be a failure.

Next, students are introduced to the relational data model
and SQL. In the second part of their homework assignment,
students reduce a class-provided E-R diagram of the first
homework to a collection of tables. They populate these
tables with synthetic data and are asked to write several
applications to produce different set-oriented functionality
(including aggregates). Each can be accomplished by writ-
ing a SQL command. This shows students how to think in
terms of both object-oriented functionality and its mapping
to flat tables.

We continue to exercise students’ understanding of the
object-oriented programming language by requiring them to
implement a restricted file system, its buffer pool, and ab-
straction of records on disk pages. This project is broken
into three parts: a) a simple file system using a Windows
file with functionality such as CreateFile, DeleteFile, Ap-
pendPage, FreePage, etc., b) a buffer pool manager that
stages disk pages into frames of a buffer pool, and c) ab-
straction of records across disk pages. We provide them
with sample code that exercises each part of the project ex-
tensively. In the past, we have used Java as the required
programming language for this effort. More recently, we
have switched to C#. It has been fascinating to see almost
all students learn an object-oriented programming language
constructs on their own in a limited amount of time. I typi-
cally introduce them only to object-oriented constructs such
as inheritance (and its casting idiosyncrasy), encapsulation,
polymorphism and the students learn the rest on their own.
Almost all student (95-99%) complete the first part of the
project. Parts (b) and (c) are more challenging because they
must manipulate data structures effectively while maintain-
ing a one-to-one correspondence between the main memory
representation of data and its disk resident image. A lower
percentage of students are able to complete parts (b) and
(c) – 60-70% is typical.

4. SUMMARY AND FUTURE EDUCATION
ENHANCING TOOLS

Teaching students to conceptualize data in object-oriented
terms while utilizing tools such as RDBMSs is an important
challenge. Projects along with in-class discussions is one
approach to address this challenge. Another approach that
remains to be explored includes visualization tools that en-
able students to observe the object-oriented representation
of an application’s data and how it is mapped into tables
(and the organization of these tables across mass storage
devices). In order to be effective, these tools must be easy
to use and manipulate in real-time. This would enable an
instructor to show a conceptual abstraction of a database to
students, question the design of this abstraction, change this
abstraction and reason about modifications. The visualiza-



www.manaraa.com

tion should be able to show a mapping to a relational repre-
sentation and the organization of data across the platters of
one or more disks. This would help students understand the
importance of physical data models and how an abstraction
impacts both system functionality and performance. With
rapid technological advances, this vision might be realized
in the near future.

5. REFERENCES
[1] P. Chen. The Entity-Relationship Model: Toward a

Unified View of Data. ACM Transactions on Database
Systems, 1(1):9–36, 1976.

[2] C. Davis, S. Jajodia, P. Ng, and R. Yeh.
Entity-Relationship Approach to Software Engineering.
North Holland, 1983.

[3] H. Deitel and P. J. Deitel. Java How to Program, Fifth
Edition. Prantice Hall, 5th Edition, ISBN: 0131016210,
2002.

[4] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Benjamin Cummings, 2000.

[5] C. Petzold. Prgoramming Windows with C# (Core
Reference). Microsoft Press, ISBN: 0735613702, 2001.

[6] C. Kobryn. UML 2001: A Standardization Odyssey.
Communications of the ACM, 42(10), October 1999.

[7] B. Thalheim. Entity-Relationship Modeling: Foundation
of Database Technology. Springer Verlag, 2000.


